Theorem (Squeezed sequence lemma). Let (a_n) , (b_n) and (c_n) be three sequences of real numbers. Assume that

(1) For all $n \in \mathbb{N}$, $a_n \leq b_n \leq c_n$.

(2) $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = a.$

Then $\lim_{n\to\infty} b_n = a$.

Proof. Fix $\varepsilon > 0$. Observe that if $a_n \in V_{\varepsilon}(a)$ and $c_n \in V_{\varepsilon}(a)$, then $b_n \in V_{\varepsilon}(a)$. Thus we have $\{n : b_n \notin V_{\varepsilon}(a)\} \subset \{n : a_n \notin V_{\varepsilon}(a)\} \bigcup \{n : c_n \notin V_{\varepsilon}(a)\}.$

Since both sets in the right hand side are finite, so is the set in the left hand side. \Box